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V. CONCLUSION 
Because a symmetric  Toeplitz matrix is a doubly symmetric 

matrix,  its eigenvectors are either  symmetric  or skew sym- 
metric  (provided the eigenvalues are distinct). The cor- 
responding eigenfdters have their  zeros  either  on  the  unit 
circle or  they come in inverse pairs, with one  zero inside the 
unit circle and  the second outside  the  unit circle. We have 
shown that a symmetric  Toeplitz matrix is a special case where 
the eigenfilters corresponding to  the maximum  and  minimum 
eigenvalues,  if distinct, have their  zeros on the  unit circle. The 
same property  may  or may not  hold  for  the  other eigenfilters. 
We have  also shown that even if all the  eigenfdters of a doubly 
symmetric  matrix have their zeros on  the  unit circle, the 
matrix need not be Toeplitz. If some eigenvalue has  multi- 
plicity greater than  one,  the corresponding eigenvectors need 
not even be symmetric,  although they could be chosen to  be 
symmetric. 
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Differintegral  Interpolation  from a Bandlimited 
Signal‘s  Samples 

Abstract-The Whittaker-Shannon cardinal series dictates  that  any 
Lz bandlimited signal  is defined everywhere by its (sufficiently closely 
spaced) sample values. This paper derives those  interpolation  func- 
tions necessary for direct evaluation of such a signal’s derivatives, inte- 
grals, and  fractional derivatives directly from the sample values. Gener- 
ation  and recursion formulas  for these interpolation  functions are 
presented. 

I 
I. INTRODUCTION 

T is  well known  that a low-pass bandlimited signal  is 
uniquely specified by  its  sufficiently closely spaced sample 

values [ 11 -[4] . Thus,  the results of all operations on  the sig- 
nal are also specified by these values. In this paper, we present 
interpolation’  functions  which  directly generate derivatives and 
integrals of arbitrary  order  directly  from  the signal’s  samples. 

Manuscript received July  29,  1980. 
R. J. Marks, I1 is with the  Department of Electrical Engineering,  Uni- 

versity of Washington, Seattle, WA 98195. 
M. W. Hall  was with the  Department of Electrical Engineering,  Uni- 

versity of Washington, Seattle, WA 98195. He  is now with Bell Labora- 
tories, Holmdel, NJ 07733. 

The classical sampling theorem  dictates  that  each  point of 
interpolation is determined by every sample value. The con- 
tribution  of a sample value roughly decreases monotonically 
as the interval to  the  point  of  interpolation increases. For dif- 
ferintegral interpolation,  the  amount of contribution  from 
each sample value increases with the  order  of  differentiation 
or  integration. Conventional numerical analysis techniques, 
for  example, utilize only a few adjacent sample values to  inter- 
polate a derivative at a point [5] ,  [6]. The  interpolatory rela- 
tions presented in this paper relate the  contributions  of  each 
sample value to  each  point  of  interpolation. 

One technique to generate differintegrals stems from the 
derivative and  integration  theorems of Fourier analysis [7]. 
A signal’s spectrum is appropriately weighted and inverse 
transformed. The use of the  FFT  for digital implementations 
makes  such a technique  attractive. Recent fast convolution 
algorithms, however, have been shown in many cases to re- 
quire fewer operations [SI .  The interpolatory relations pre- 
sented in this paper-each  in convolution  form-thus  afford a 
potentially more efficient computational  technique  for per- 
forming differintegrals. 
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The discrete  convolution  operation can be  expressed as a is the  derivative  kernel. From  the derivative  theorem  of 
matrix-vector  product.  There  has  been much recent  interest  Fourier  analysis, we can  equivalently  write 
and success in the utilization  of both coherent  and  noncoher- 
ent  optical processors to perform  such  operations.' The 
capacity  for  information  throughput is incredibly high. The 
interpolatory  relations in this paper can be directly  applied to 
fabricate  optical  transmittances  for use in  many  of  these =- (- l y p !  
processors to perform  differintegral  operations  on  unaliased 
data. 

1/2 

-1/2 
dp(t)  =I ( j 2 ~ f ) ~  ejznft df 

[sin (nt) C O S ~ / ~  (nt) 
ntp+ 

- cos nt sin(p - (nt)] (8) 
11. PRELIMINARIES 

The classical Whittaker-Shannon [ I ]  , [2] cardinal series is 
[31 , [41 

x ( t )  = x(t,) sinc 2W(t - t,) 
m 

,= -m 

where 

sinc t = -. sin nt 
nt 

This  uniformly  convergent series [lo]  is applicable to all x ( t )  
in L2 when 

x ( t )  = X ( f )  eizmf* df r:" 
where 

X ( f )  = l-m x ( t )  e-jZmft dt.  (4) 

The  sample  locations in (1)  are at tn = n/2W where 2W, the 
signal's bandwidth: is  defined  in (3). This class  of band- 
limited Lz  signals  will be,denoted  by Bw. The signal samples 
uniquely  specify x ( t )  via (1). In this  paper, we derive the 
interpolatory  relations to generate  differintegrals  of x ( t )  
directly  from  its  sample values. The case of  general  linear 
operations on x(t) has  been  treated elsewhere [ 111 . 

111. INTEGER DERIVATIVE INTERPOLATION 
The interpolation  formula  for  the pth derivative  of  a  band- 

limited signal originates  directly  from (1): 

d P ) ( t )  = (2W)p x, ~ ( t , )  dp [2W( t  - t,)] 
m 

(5) 
*= -m 

where 

and 

d,(t) = - sinc t ( 3  

where,  in the second step, we have used [12] . The  incomplete 
sine and cosine are  defined,  respectively, as 

[a1 (-1)ntZ" cos&) = - 
n=O (2n)! 

[a1 (- l ) n p + '  
sin,(t) = 

n = O  (2n t I)! 

The notation [a] denotes  the  greatest  integer less than  or 
equal' to a. To allow for p = 0 in (8), we set sin-l/z(t) = 0. 
Then do(t) = sinc (t). 

For large t and even p ,  the c o ~ ~ / ~ ( n t )  term  in (8) dominates. 
For odd p ,  sin(, - l )p  (nt)  dominates.  This  observation  leads to 
the  following  asymptotic  relation  for dp(t)  for large t: 

p even 

Convolution  of (2W),  dp(2Wt) with  any x ( t )  E B w  yields 
dp)( t ) .  To show  this, we write 

W 
= X ( f )  ( j 2 ~ f ) ~  ejznft df 

=x(P)( t )  (1 1) 

where, in the second step, we have used the  power  theorem of 
Fourier  analysis [ 131 . This result  is  a  generalization  of that of 
Gallagher and Wise [ l o ]  who noted  that  the first  derivative  of 
a  bandlimited signal can  be achieved by  a convolution  with  an 
appropriately scaled first-order  spherical Bessel function 
j l  (t) = -(d/dt) sinc (t/n). 

Using dq(t) as the signal in (1 1) gives the  recurrence  relation 

A list of references of  work  in this area can be  found  in [9]. 
2The spectrum of x ( t )  can be  identically zero  over any subinterval 

Thus,  higher  order  kernels can be generated  by  convolution  of 
of I f (  < W. If  nonzero  only over the interval I f 1  < B < W, we are lower  ordered  kernels- 
merely  oversampling. A second  obvious  recurrence  relation is 
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Using this  expression  with q = 1 and the relations 

d 
- cos,(t) = -sin, -1 (t) 
dt 

d 
- sin,(t) = cos,(t) 
dt 

(1 4a) 

(14b) 

gives, via (8), a third  recurrence  formula: 

(- l ) P / 2 r r P  

t 
cos rrt; 

p  odd. 

Alternate derivative interpolation can be achieved by recog- 
nizing that x ( f ) € B w  implies x (P) ( t )EBW.  Using (l), we 
then have Fig. 1. Plots of Idp(rn) I for even p. Points are connected for clarity. 

m 

x(p) ( t )  = x(P)(tm) sinc 2 ~ ( t  - tm).  ( 1  6 )  
M = -03 

Thus, the signal derivative is uniquely  specified by  its sample 
values which,  from (S), can be  computed by  the  discrete 
convolution 

where,  from (8); I 
9 

1 0 2 -  \ 
d p h )  = - 7 

m = 0. (18) 

Here, 6n,m denotes  the  Kronecker  delta.  Note  that  the dis- 
crete  derivative  kernel is independent of the signal bandwidth. 
Plots  of I dp(m)l are shown in Figs. 1 and 2 .  

Using (9b),  the  asymptotic  behavior  for dp(m)  for large m 
is found to be 

A recurrence  relation for  the discrete  derivative  kernel  fol- 
lows from  the use of dq(n) as the signal in (1 7): m 

dp+q(m) = c d q ( 4   d p ( m  - n). 

3To derive the m = 0 case  in (18), it is easiest to use the integral in 
,= -m 

(8) with f = m = 0. This is the discrete  equivalent of (12). 
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A second  recurrence  relation  immediately  follows  from (15) 
form # 0: 

p odd. 

(21) 

The  discrete derivative kernel  is  square  summable.  Since 
dP(m) is simply  the mth Fourier  coefficient  of ( j 2 ~ f ) ~  for 
I f 1  < 3, we have 

m = - m  J - w  

- I  

Fig. 3. Plots of d-&). 

and 

d-p( t )  = sinc(-P)t 
- 7r2P -- 

2 p +  1 '  (22) = P  (- 1 14 (7rt)2q go '(2q + 1) (24 +- p ) !  
The discrete derivative kernel can be utilized to couple  a 

bandlimited signal's Taylor series and sampling theorem  expan-  Equation (28) can easily be verified by  induction using the 
sion. If x ( t )  EBw, it is analytic  everywhere [14]. Thus,  its  recursion  relation 
Taylor series about tm is 

r t  

converges for all t. Substituting (17) gives 

(23) 
J d_,(t - m )  dt = d - P - l  (t - m) - d - p - l  (-m). (30) 

0 

Plots  of d-P( t )  are  shown in Fig. 3. 
We can simplify the series  expression  in (29) by recognizing - (2Wt-m)P - that 

x@)= c c x@,) d p b  - n). (24) 
p = o  P !  , = - m  - t l - P  d -p ( t )  = 

d - (- 1)4(nt)"+P 
dt q = o  (2q + P I !  Since the series is absolutely  convergent (see the  Appendix), 

we can  interchange  the  summation  order: = e,(+ (3 1) 

x ( t )  = 2 x@,) 2 (2wt - m)PdP(m - n). (25) One can easily show that 

,=-m p = o  P !  (-1)PlZ [cos nt - cos(P-2)/2(nt)]; { 
p even 

(-l)(P-1)/2 [sin nt - ~ i n ( ~ - ~ ) / ~ ( n t ) ] ;  p odd. The sum over p is recognized as the Taylor series expansion  of 
sinc 2W(t - t,) about t = t, . Thus, (25) reduces to the  cardi- 
nal series in (1). (32) 

q t )  = 

IV. INTEGER INTEGRAL INTERPOLATION It  follows that,  for p > 1 , 

We defiie  the  pth integral  of x ( t )  by 

x ( - p ) ( t )  = it - x ( t )  (dt)P 
t 

d -J t )  = tP-' i t  Bpodr. 

(26) Recognizing further  that 

(33) 

where we have chosen the lower limit of integration to  be zero. 
(In  general, ~ ( - ~ ) ( t )  4 Bw.) The  corresponding  interpolation 
relation  from the sample values of x ( t )  is 

(34) 

then gives the recurrence  relation  (for p > 1) 

, < - P ) ( t )  = - x ( t m )  ~inc(-~)(2Wt - m) (27) ' ( P  - 1) d-p(t) = t d - p + ~ ( t )  - n-Pep(t)- (35) 
(2W)P m =  -- By induction, we can show that application  of (35) n times 

where  yields 
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d-p ( t )  = 
( p  - n - l)! 

( P -  
tn d-p+n(t) 

n - 1  t k ( p  - k - 2)!Opwk(t)  

k=O 

The closed-form expression for  the integral kernel  then  fol- 
l o w s f o r n = p -   1 :  

Note  that 

d-, (t)  = -Si (k) 1 
71 

where 

si(t) = 1 =dt 
t .  

t 

is the well-tabulated sine integral [ 151 . 

V. FRACTIONAL DERIVATIVE INTERPOLATION 
For p a rational  number, we  have from (1) 

(39) 

x(P)(t) = x ( tn )  s i n c ( ~ ) ( 2 ~ t  - n). (40) 
m 

n = - m  

The  fractional derivative of  any  analytic  function $(t)  can be 
written as [ 161 

where we  have chosen the “lower integration  limit” as zero 
for p < 0. Thus, 

Therefore,  fractional derivatives can be generated from a series 
of weighted discrete derivative kernels. For p > 0, sin@(t)  is 
bandlimited. 

APPENDIX 
Here, we show that  the Taylor series for all x( t )  EBw is 

absolutely convergent. Expanding x ( t )  about t = T gives 

The series  converges absolutely  if 

From  the derivative theorem  for  Fourier  transforms, 

where, in the second step, we  have used Schwarz’s inequality. 
Since x( t )  E L z  , 

r W  

is finite.  Thus, 

m=O m! 

This bound is fiiite  for all finite t and 7. Thus,  any Taylor 
series for  any x( t )  E Bw is absolutely convergent. 
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Floating  Point Roundoff Error in the 
Prime Factor FFT 

Ahstmcf-The  prime factor fast  Fourier  transform (PF FFT),  de- 
veloped by Kolba  and Parks, makes use of recent  computational  com- 
plexity  results by  Winograd to compute the DFT with a  fewer  num- 
ber of  multiplications  than that required by the FFT.  Patterson  and 
McCIellan  have derived an expression for the mean squared  error (MSE) 
in the  PF  FFT, assuming finite  precision  fixed point arithmetic. In this 
paper, we derive an expression for the MSE in the  PF  FFT, assuming 
floating point arithmetic.  This  expression is quite  complicated, so an 
upper  bound on  the MSE is also derived which is easier to compute. 
Simulation  results are presented  comparing the error in the  PF  FFT 
with  both the derived bound and the error observed in  a  radix-2 FFT. 

F 
I. INTRODUCTION 

AIRLY  recently,  a new  class of  algorithms  has emerged 
for computing  the  discrete  Fourier  transform  (DFT)  with 

a fewer number  of  multiplications  than that required  by  the 
fast  Fourier  transform  (FFT).  The  first of these  algorithms 
was developed by Winograd [ l]  , [2]  and  makes use of  his 
formulation  for  performing  convolution  with  the  minimum 
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number of multiplications [3]. This  algorithm  has  been 
termed the Winograd Fourier  transform  algorithm (WFTA) 
[4]. An unnested version of  the WFTA has  been  proposed by 
Kolba  and  Parks  and  termed  the  prime  factor FFT (PF FFT) 

It is of  interest to investigate the effects of finite  register 
length  in  these new algorithms.  Patterson  and McClellan have 
derived expressions  for  the average mean  squared  error (MSE) 
in both  the WFTA and PF  FFT, assuming a  statistical  error 
model  and  fixed  point  arithmetic [6] . In  this  paper, we restrict 
attention  to  the  PF  FFT and  consider  the case with  floating 
point  arithmetic.  Section I1 briefly  introduces  the  PF  FFT, 
reviews the  standard  floating  point  error  model,  and  develops 
an expression  for  the  error  vector at  the  output of  a  one- 
dimensional Winograd DFT.  In  Section 111, we derive a  rather 
cumbersome  expression  for  the  floating  point MSE in  the 
PF  FFT. This  expression is of little  practical  use, so in  Section 
lV, we proceed to bound it by a  quantity  which is easier to 
compute.  Simulation  results  are  presented  in  Section V, com- 
paring the observed error in the  PF  FFT  with  both  the derived 
bound  and  the  error  in  a  radix-2 FFT. 

P I .  

11. PRELIMINARIES 
A. PF FFT Algorithm 

represented  in  matrix  notation as 
A one-dimensional  Winograd-type  DFT  algorithm can be 

Y = CDAy (1 1 
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